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1 Probability theory review

1.1 Basic probability theory
A probability space is a triple (Q, F,P), where
e  is the sample space, which is a (non-empty) set.
e Fis a a o-field, which is a space of subsets of () satisfying

- Qe F,
- AcF = A% c F,
— A, eF,n>1 = Up>1 A, € F.
A set A € F is called an event.
e P: F —0,1] is a probability measure, i.e.

- P[] =1,
— If {A4,, n > 1} C F be such that 4, N A; = 0 for all ¢ # j, then P[U,>14,] =
anl ]P)[An]

Example 1.1. (i) Q = {1,2,--- ,n}, F:=0o({1},--- . {n}), P{i}] = %, for eachi=1,--- ,n.
In above, o({1},--- ,{n}) means the smallest o-field containing all events {1},--- ,{n}. In this
case, it is the space of all subsets of Q.

(ii)) @ = R, F := B(R) is the Borel o-field on R, i.e. the smallest o-field which contains all
open set in R. For some density function p : R — Ry, a probability measure P can be defined,
first for all intervals (a,b) with a < b, by P[(a,b)] := fab p(x)dx, and then extended on the Borel
o-field F.

A random variable is a map X : 2 — R satisfying
X YA ={weQ : X(w)e A}y e F, forall Ac B(R) < {X <z} e F, forall z € R.
The distribution function of X is given by
F(z) := PIX <z], z€R.

Example 1.2. (i) A discrete random variable X :
pi=PX=uz], ieN, > p=L
€N

(ii) A continuous random variable X (with continuous probability distribution), one has the den-
sity function
p(z) = F'(x), x € R.

(iii) There exists a some random variable, whoseis distribution neither discrete nor continuous.



Expectation Let X be a (discrete or continuous) random variable, the expectation of E[f(X)]
is defined as follows:

e When X is a discrete random variable such that P[X = z;] = p; for i € N. Then

E[f(X)] == Y f@)PX =z] = > f(z:)pi-

ieN ieN
e When X is a continuous random variable with density p: R — R. Then

E[f(X)] = /Rf(;v)p(x)da:, whenever the integral is well defined.

Remark 1.3. In general case, one defines the expectation as the following Lebesque integration:

E[f(X)] = /Q F(X (@) dP(w).

A rigorous definition of the above integral needs the measure theory, which is not required in this
course.

For two (square integrable) random variables X and Y, their variance and co-variance are
defined by

Var[X] :=E[(X — IE[X})Q], Cov[X,Y]:=E[(X — E[X])(Y — E[Y])].

The characteristic function of X is defined by ®(0) := E[e"X].

Independence The events Aq,---, A, € F are said to be (mutually) independent if
P[A;Nn---NAy] = [ PA].

Next, we say that the o-fields Fy,--- , F, are (mutually) independent if

n

PlA; NN Ap] = [[PIA], for all Ay € Fi -+, Ay € F.
i=1
Finally, we say that random variables X7, .-, X,, are (mutually) independent if
o(X1),---,0(X,) are independent.
Remark 1.4. (i) The o-field 0(X1) is defined as the smallest o-field containing all events

{Xi1 <z} = {weQ : Xj(w) <z}, forall z € R.

As X1 is a random variable, it is clear that o(X1) C F.

(ii) We say that the a random variable X, is independent of Fo if 0(X1) and Fa are independent.



Example 1.5. Lel us consider the case, where Q ={0,1,2,3}, P[X = w| = i, define

_]0 we{0,2}, ~J0 we {01},
Xl(w)_{1 w e {1,3), XQ(W)_{1 w e {2,3).

In this case, o(X1) = {0,Q,{0,2},{1,3}}, and o(X2) = {0,9,{0,1},{2,3}}. Moreover, it can
be checked that X, is independent of o0(Xs). For example, one can check that

Pl{X: =0} N {X2=0)] = P[{0}] = P[{0,2}]P[{0,1}] = 1,

which implies that the two events {X; = 0} and {X2 = 0} are independent. Similarly, one can
check that { X1 =i} is independent of { X2 = j} for all i,5 € {0,1}. This is enough to show that
X1 and X9 are independent.

Lemma 1.6. If X1, -, X, are independent, f; are measurable functions. Then f1(X1), -, fn(Xn)
are independent.

Proof. Let us consider the case n = 2. To prove that f1(X1) is independent of fa(X2), it is enough
to check that the event {f1(X1) < y1} is independent of the event {f2(X2) < yo} for all real
numbers y1,y2 € R. At the same time, we notice that {f;(X;) < v} = {Xi € f; '((—o0,ui])} €
o(X;). Since o(X1) is independent of o(X32), this is enough to conclude the proof. O

Lemma 1.7. If X1, -+, X, are independent, then

E[fi(X1) - fu(Xa)] = Elf1(X0)]- - E[fn(Xn)]:

Consequently,
Var[X; + --- + X, = Var[X1] + - - - + Var[X,,].

Cov[fi(Xi), f;(X;)] =0, i # j.

Remark 1.8. : The inverse may not be correct. Let us consider a random variable X1 ~ U[—1,1]
follows the uniform distribution on [—1, 1], whose density function is given by p(x) = %1{,1§x§1}.
Let Xo := X?. By direct computation, one can check that

E[X1X5] = E[X1]E[X2], and hence Cov|[Xi, Xs] =0.
Nevertheless, it is clear that X, and Xo are not independent.

We next provide some notions of convergence of random variables. Let (X,,)n>1 a sequence
of random variables, ans X be a r.v.

e Almost sure convergence: We say X,, converges almost surely to X if

P[ lim X, = X]| =1.

n—oo
e Convergence in probability: We say X,, converges to X in probability if, for any € > 0,

lim P[|X,, — X|>¢] = 0.
n—oo
e Convergence in distribution: We say X, converges to X in distribution if, for any bounded

continuous function f,
lim E[f(X,)] = E[f(X)]

n—oo
4



e Convergence in LP (p > 1) space: Assume E[|X,,|P] < oo, we say X,, converges to X in L
space if
lim E[|X, - X|’] = 0.
n—oo

Lemma 1.9 (Relations between the different notions of the convergence). One has

Cvg a.s. = Cvg in prob. = Cvg in dist.,

Cvg in L = Cvg in prob.
Cvg in prob. = Cvg a.s. along a subsequence.
Lemma 1.10 (Monotone convergence theorem). Assume that 0 < X,, < Xp,41 for alln > 1,

then
E[ lim X,] = lim E[X,].

n—o0 n—o0

Remark 1.11. In practice, we may have X,, := fn(X) for a sequence (fyn)n>1 satisfying 0 <
f1 < fo<---. In this case, we have

E[ lim fu(X)] = lim E[f,(X)].

n—o0

Theorem 1.1 (Law of Large Number). Assume that (X,)n>1 is an i.i.d. sequence with the same
distribution of X and such that E[|X|] < co. Then

_ 1 &
lim X, = nli_)Ig()EZXk = E[X], a.s.

n—00
k=1

Theorem 1.2 (Central Limit Theorem). Assume that (Xp)n>1 is an i.i.d. sequence with the
same distribution of X and such that E[|X|?] < co. Then

Var[X]

converges in distribution to N(0,1).

We finally provide some useful inequalities.

Lemma 1.12 (Jensen inequality). Let X be a r.v., ¢ be a conver function. Assume that E[|X|] <
oo and E[|¢(X)|] < oco. Then

S(E[X]) < E[p(X)].
Proof. As ¢ is a convex function, there exists an affine function g(x) = ax + b such that
H(E[X]) = g(E[X]), and ¢(z) > g(x) for all z € R.

Therefore,

Lemma 1.13 (Chebychev inequality). Let X be a r.v., f: R — Ry be an increasing function.
Assume that E[f(X)] < oo and f(a) > 0. Then

PX >a] < M

— fla)]
!



Proof. We will prove this for continuous random variable X, and the proof for discrete random
variable X is essentially the same, replacing integrals with sums. Let p(x) be the probability
density function of X. By definition, E[f(X)] = [*_ f(z)p(x)dz. By monotonicity of f(z), and
the fact that f(x), p(x) are non-negative,

B0 = [ f@pla)da
— [ t@p@s+ [ sl
>/ " f@)p(@)ds
> [ Hpis

the result follows by taking out the constant f(a) from the integral. O

Lemma 1.14 (Cauchy-Schwarz inequality). Let X and Y be two r.v. Assume that E[|X|?] < co
and E[|Y|?] < co. Then
EXY] < VE[IXPIE[Y]?].

1.2 Conditional expectation

Theorem 1.3. Let (Q, F,P) be a probability space, G be a sub-o-field of F, X a random variable.
Assume that E[|X|] < co. Then there exists a random variable Z satisfying the following:

e E[|Z]] < .
e 7/ is G-measurable.

e E[XY] =E[ZY], for all G-measurable bounded random variables Y.
Moreover, the random Z is unique in the sense of almost sure.

Definition 1.15. We say that the random variable Z given in Theorem 1.8 is the conditional
expectation of X knowing G, and denote

E[X|G] := Z.
When G =o(Y1,---,Y,), for Y = (Y1, - .Y,,), we also write
E(X[Vi, Y] = E[X[G].

In this case, there exists a measurable function f : R” — R such that E[X|Y] = f(Y). To
compute E[X|Y], it is enough to compute the function:

EX|Y =vy| := f(y), for all y € R™.

Example 1.16. (i) Discrete case: P[X = x;,Y = y;] = p; j with 3, ;pij = 1. Then

E[X\Y:y»] = E[le:y].] _ Zz‘eNl‘mi,j
’ E[ly=y,] > ienPij
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Proof. Let us denote f(y;) := M, then it is enough to show that E[X|Y] = f(Y).
J 2 ienPij
i€ 3

First, it is trivial that f(Y) is o(Y')-measurable.
Next, by direct computation,

=S Bl = yy) = 3 e Tl S S S E[X < oo

jEN j€EN ZZEN Pij 1€EN 1,jEN

Finally, for any o(Y')-measurable bounded random variable Z, there exists a measurable function
g : R™ — R such that Z = ¢g(Y), then we have

Ef(V)g(Y)] = Fun)gw)PY =yl = wigly)pi; =E[Xg(Y)].
JEN i,jEN
This is enough to conclude the proof by the definition of conditional expectation. O

(ii) Continuous case: Let p(x,y) be the density function of (X,Y'), and assume that [, p(z,y)dx >
0 for all y € R. Then

Jrzp(z,y)dx
fR p(ZL', y)dl‘
Proof. Let us denote the r.h.s. of (1) as f(y). Then it is enough to show that E[X|Y] = f(Y).

First, it is clear that f(Y) is o(Y')-measurable.
Next,

E[|f //yf ]pxydxdy—//

</ Je lzlp(z, y)dx

Jg p(z,y)dx

E[X|Y =y] = (1)

fopa; y)dx
fR x,y)dx

o, y)dudy = /R /R 2oz, y)dzdy = E[X]] < o

p(x,y)dxdy

Finally, for any o(Y')-measurable bounded random variable Z, there exists a measurable function
g : R™ — R such that Z = ¢g(Y), then we have

- Jr zp(x, y)da . .
E[f(Y //f p(x,y)dzdy —/R T y)de 9(y)p(z,y)dxdy

/ / zg(y)p(z, y)dedy = E[Xg(Y)].
This shows that E[X|Y] = f(Y) by the definition of conditional expectation. O

Example 1.17. Let X and Y be two independent random varitables with the same distribution,
and P[X = +1] = P[X = +1] = 5. One can compute that

E[X]=0, and E[X 4+Y|Y]=
We finally provide some properties of the conditional expectation from its definition.

Lemma 1.18. Let X and Y be two r.v. such that E[|X|] < oo and E[|Y|] < oo, a,b be two real
numbers. Then
E[aX + bY'|G] = «E[X|G] + bE[Y|G].
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Proof. Tt is enough to verify that aE[X |G]+bE[Y |G] satisfies the three properties in the definition
of the conditional expectation E[aX + bY |G].

First, aE[X|G] + bE[Y|G] is obviously G-measurable.
Next, from the definition of conditional expectation, we know E[|E[X|G]|], E[|E[Y|G]|] < oo,
then

E[laE[X|G] + 0E[Y[G]]] < [a|E[E[X|G]]] + [PIE[E[Y|G]]] < oo
Finally, for any G-measurable bounded random variable Z, we know that
E[E[X|G]Z] = E[X Z],E[E[Y|G]Z] = E[Y Z].
Then by linearity of expectation, we have

E[(aE[X|G] + DE[Y|G])Z] = aE[E[X|G]Z] + DE[E[Y]G])Z]
=aE[XZ]|+bE[YZ] =E[(aX +bY)Z].

O]

Lemma 1.19. Let X, Y be r.v. such that E[|X|] < oo, Y is G-measurable and E[|XY|] < oo,
then
E[E[X|0]] = E[X], and E[XY|G] = E[X|G]Y.

If X is independent of G, then

E[X|G] = E[X].
Proof. First, by taking ¥ = 1q in the third property in Theorem 1.3, it follows immediately
that E[E[X|G]] = E[X].

To prove E[XY|G] = E[X|G]Y, it is equivalent to verify that E[X|G]Y satisfies the three
properties in the definition of conditional expectation for E[XY|G], by the uniqueness of the
conditional expectation.

Let us first assume that X and Y are nonnegative. Then for any k € N, then E[X|G] (Y Ak) is
G-measurable since both of E[X |G] and (Y Ak) are G-measurable. Moreover, for the integrability,
one has

E[[E[X|G](Y AR)[] < RE[[E[X|G]] < oo.

Finally, for any bounded G-measurable r.v. Z, (Y Ak)Z is bounded and G-measurable, then one
has

E[E[X|G)(Y Ak)Z] =E[X(Y Ak)Z] =E[E[X(Y Ak)G]Z].

Hence it follows that
EX(Y Ak)|G] = E[X|G](Y A E).

Then by monotone convergence theorem for conditional expectation (see Lemma 1.21 below),
one obtains that

E[X|g]Y = lim E[X|GI(Y AK)= lim E[X(Y AK)G]=E[ lim X(¥ AK)G]=E[XY|G].



When X, Y are not always nonnegative, one can write X = X — X, Y =Y+ —Y~, where
X*T, X, YT and Y~ are all nonneagive random variables. Then

EXIGlY =E[XT - X" [Gl(YT —Y")

[
=E[XT|gY T —E[X"[G]YT —E[XT|G]Y™ +E[X|g]Y™
:E[Xﬂ”!g] EXTYT|G] - E[XTYT|G] + E[X Y |G]
=E[(XT - X7)(Y"-Y")|g]
=E[XY|G].

Moreover, E[X|G]Y is G-measurable since both of E[X|G] and Y are G-measurable. One can
also check the integrability condition by

E[IE[X|G]Y]] = E[[E[XY|F][] < o0

which proves that E[XY|G] = E[X|G]Y

Finally, when X is independent of G, we consider E[X] as a constant r.v., and check that it
satisfies the properties in the definition of conditional expectation E[X|G]. As a constant r.v.,
E[X] is clearly G-measurable and integrable. Moreover, for any bounded G-measurability r.v. Z,
we have by linearity of expectation

EE[X]Z] =E[XZ].
This proves that E[X] is the conditional expectation of X knowing G. O

Lemma 1.20. Let X be a random wvariable, p be a convex function. Then

Elp(X)|G] = »(E[X[]]), a.s

Proof. We first prove monotonicity for conditional expectation. Claim that if X,Y are r.v. such
that E[|X|], E[|Y]|] < co and X > Y, then E[X|G] > E[Y|G] a.s. To see this, set Z := E[X —Y|G]
and A := {w : Z < 0}. Since A € G by definition and (X —Y) > 0a.s., E[Z14] = E[(X-Y)14] >
0 so P[Z < 0]] = P[E[X|G] < E[Y|G]] = 0 as claimed.

Recall that a function f: R — R is convex if and only if there exits a family {f,} of affine
functions (i.e. fn(x) = apz + by, for some a,, b, € R) such that

f(z) = sup fp(x), forall zeR.

Thus,
Elp(X)|9] > ElanX +ba|G] = anE[X|G] +b

By taking supremum over both sides, it follows that
Elp(X)|g] = sup{anE[X[G] +bn} = @(E[X|F]).

O

Lemma 1.21 (Monotone convergence theorem). Let (X,,n > 1) be a sequence of integrable
random variable such that 0 < X, < Xy, 11, a.s. Then

lim E[X,|G] = E[ lim X,|g].
n—oo n—0o0



Proof. Notice that by the increasing of {X,,}, for almost all w, we have
E[X,|G] < E[lim X,|G] a.s.
n—o0

Then with the same procedure in the proof of conditional Jensen’s Inequality, we can prove that
0 < E[X,|G] < E[X,+1|G] a.s. and we get the existence of lim,_,o E[X,|G]. Taking the limit in
the above inequality, we have

lim E[X,|G] <E[lim X,|]] a.s.
n—0o0 n—00

Then the monotone convergence theorem (Lemma 1.10) implies that

E[lim E[X,|G]] = lim E[E[X,|G]] = lim E[X,] = E[lim X,] = E[E[lim X,|F]].
n—oo n—oo n—oo n—oo n—o0
Hence we conclude the proof. O

Lemma 1.22. Let X be an integrable random variable, and G := {0,Q}. Then
E[X|G] = E[X].

Proof. 1t is equivalent to prove that any G-measurable random variable Z is a constant random
variable a.s.

By contradiction, we assume that Z is not a constant random variable. Then there exist
some constants C7,Cy € R with C; < C5 such that

{Z=0C} # ¢, {Z=Ca} # ¢

Hence we have {Z < C1} ¢ G, which gives the fact that Z is not G-measurable. Now since this
is a contradiction, we complete the proof. ]

Lemma 1.23. Let X be an integrable random wvariable, and Gi C Go be two sub-o-field of F.
Then

E[E[X]G2]|6:] = E[X|G1].
Proof. Set Z := E[E[X|G2]|G1], it is enough to verify that Z satisfies the three properties in the
definition of E[X|G;].

First, Z is obviously Gi-measurable and integrable, as it is defined as the conditional expec-
tation of some random variable knowing G;. Moreover, for any G;-measurable bounded random
variable Y, we know by Lemma 1.19 that

E[zY] = E[E[E[X[G]|61]Y] = E[E[ E[X|G]Y|G1]]
= E[E[X|G:]Y] = E[E[XY|Gs]] = E[XY].

This concludes the proof. ]

2 Discrete time martingale

Definition 2.1. In a probability space (Q,F,P), a stochastic process is a family (Xn)n>0 of
random variables indezed by time n > 0 (or t,, n > 0). A filtration is family F = (F,)n>0 of
sub-o-field of F such that F,, C Fnq1 for alln > 0.

10



Example 2.2. Let B = (By,)n>0 be some stochastic process, then the following definition of Fy,
provides a filtration (Fp)n>0:
]:n = O‘(BQ, Bl, e ,Bn)

In particular, let By =0, B, = Zzzl &k where (&)g>1 is an i.i.d. sequence of random variables
with distribution P[¢, = £1] = 5. Then

]:() = {@,Q}, ]:1 = ]:0 U {A, Ac}, with A = {fl - 1}, A¢ = {51 = —1}, cee

Definition 2.3. Let X = (X,,)n>0 be a stochastic process, F = (Fy,)n>1 be a filtration.
We say X is adapted to the filtration F if

X € Fn (i.e. Xy, is Fp-measurable), for all n > 0.

We say X is predictable w.r.t. F if
Xn € Fin—1yvo for alln > 0.

Remark 2.4. Let F be the filtration generated by the process B as in the above example. If X
is F-adapted, then X,, € F, = o(Bo,--- ,Byp) so that

Xn = gn(Bo, -+, By), for some measurable function gy,.
Similarly, if X is F-predictable, then X,4+1 € Fy, so that
Xn+1=Gghy1(Bo, -+, By), for some measurable function g, ;.

Example 2.5. Let ({)r>1 be a sequence of i.i.d random variable, such that P[gk = :l:l] = %
Then the process X = (Xn)n>o0 defined as follows is called a random walk:

n
Xo=0, X,= Z§k~
k=1

Remark 2.6. In above examples, a stochastic process usually starts from time 0, but we can also
consider stochastic process starting from some time tj.

Definition 2.7. Let X = (X,,)n>0 be a stochastic process, F = (Fy,)n>1 be a filtration.
We say X is a martingale (w.r.t. F) if X is F-adapted, each random variable X,, is integrable,
and

E[Xpi1|Fn] = Xn.

We say X is a sub-martingale (w.r.t. F) if X is F-adapted, each random variable X,, is
integrable, and
E[Xp+1|Fn] = Xn.

We say X is a super-martingale (w.r.t. ) if X is F-adapted, each random variable X, is
integrable, and
E[Xpi1|Fn] < X

Notice that martingale X (w.r.t. to some filtration ) is a sub-martingale, and at the same
time a super-martingale.

11



Example 2.8. Recall that the random walk X = (Xy,)n>0 is defined as follows:

n
Xo=0, Xo=> &,

k=1

where (&)g>1 be a sequence of i.i.d. of random variable such that P[¢ = £1] = 1.
Then

e X is a martingale;
o (X2),>0 is a sub-martingale;
e (X2 —n)u>0 is a martingale.

Proof. First, it is clear that X is F-adapted with respect to the natural filtration F generated by
X, and X, is integrable for all n > 0. Then by using Lemma 1.19,
EXnt1|Fn]) = EXp + &ng1|Fnl
= E[Xn|Fn] + Eléns1| 7]
= Xn+ E[fn—i-l}
= Xp.
Next, as (X,zl)nzo is F-adapted, and X2 is integrable, for Vn > 0, we compute that

= E[(Xn + §n+1)2‘}_n]

= E[X? + 2Xnbnt1 + & 1|F)]

= E[X2|Fn] + 2E[Xnént1|Fnl + Bl 11| Fo
= X7+ 2XuE[éni1|Fn] + E[E2,1]

= X2+1.

E[X; 1] 7]

Finally, Y;, := X2 — n is F-adapted, and Y, is integrable, then

EYni1lFn] = E[X2+1 — (n+1)|F,]
= X241-(n+1)
= XTQL -n

=Y.
]
Example 2.9. Let (Z;)i>1 be a sequence of random variable such that Z ~ N(0,1), and o € R,
Xo € R be real constants. Let F,, == o(Z1, -+ ,Zy), and

- 1
X, = Xpexp (a; Zy — §n02>.

Then (Xy,)n>1 ts a martingale (w.r.t. F).
Example 2.10. Let F = (F,)n>1 be a filtration, Z be an integrable random variable, and
X, = E[Z|F,].

Then (Xy)n>1 ts a martingale (w.r.t. F).
12



Lemma 2.11. Let F be a filtration, and X be a martingale w.r.t. F. Let FX denote the natural
filtration generated by X. Then X is also a martingale w.r.t. FX.

Proof. Given that X is F-adapted, we know that X, € F, for s € {0,1,--- ,n}. Define FX as
the o-field generated by Xo, X1, -, X, i.e. FX := 0(Xo, X1, --,Xn), then FX C F,. We
know that X is FX-adapted, X,, is integrable for Vn > 0, and

E[Xn-i-lu:f] =E[E[ Xn+1|]:n”-’r7i(] = E[Xn|-7:7)z(] = Xn,
then it is clear that X is a martingale with respect to FX. O

Notice that a martingale X is associated to some filtration F. However, when the filtration is
not specified, we say X is a martingale means that X is a martingale w.r.t. the natural filtration
generated by X. In this case, we can also write

E[Xpi1|Xo, -, Xpn] = X,, foralln > 0.
Lemma 2.12. Let X be a martingale w.r.t. the filtration F, then
E[Xm‘}"n] = X,, forallm>n>0.

Moreover,
E[Xn] = IE[XO], for alln > 0.

Proof. As X is a martingale, we know that E[X,,1|F,] = X,, and F,, C Fny1. Then by the
tower property in Lemma 1.23,

E[Xn+2|]:n] = E[ E[ Xn+2|"rn+1”]:n} = E[Xn-i-lu:n] =Xy
The result follows by using the above equation. O

2.1 Optional stopping theorem

Definition 2.13. Let F be a filtration, a stopping time w.r.t. F is a random variable 7 : Q —
{0,1,--- } U{oo} such that
{r<n}eF,, foralln>0. (2)

Remark 2.14. In place of (2), it is equivalent to define the stopping time by the property:
{r=n}eF,, foraln>0.

Proof. We can write

~
\‘
Il
3

—
Il

{r<np\{r <n-1}, (3)
{r<n} = U=k (4)
k=0
Now if {7 < n} € F, for any n > 0, then {r <n —1} € F,_1 C Fp, hence we know from (3)
that {7 =n} € F,.
Next, if {T = n} € F, for any n > 0, then for any 0 < k <n, {r =k} € F, C F,,, hence we

know from (4) that {7 < n} € F,. O
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Lemma 2.15. Let X be a stochastic process adapted to the filtration F, and B be a Borel set in
R. Then the hitting time T defined below is a stopping w.r.t. F:

T = inf{n >0 : X, € B},
where inf ) = 400 by convention.

Proof. For any n € N, notice the facts that
n—1
{r=n} = {Xae B} [ {Xx ¢ B},
k=0

n
{r<m} = U{XieBh
k=0
{Xy € BY € Fy C Fnforany k=0,1,--- ,n.
It follows that {7 < n} € F,, for any n > 0. Then 7 is a stopping time w.r.t. F. O

Given a stochastic process X and a stopping time 7 w.r.t. some filtration F.

Xn(w) if T(w) > n,
X‘r(w) (w) if T(u.)) <n.

XT/\Tl(w) = {

Theorem 2.1. Let F be fized filtration, X be a F-martingale, and 7 be a F-stopping time. Then
the process (X:an)n>0 is still a F-martingale.

Proof. Let us denote Y, := X, for any n € N, then we can write for any n > 0,

n—1

Y, = ZXk]l{T:kf} + Xn]l{7—2n}7 (5)
k=0
n—1

= > Xilgrogy + Xnlgrspiy, (6)
k=0

Now we verify the three conditions in the definition of martingale.
First, for any n € N, we have by (5)

n
‘Yn’ < Z ‘Xk’
k=0
Then by the integrability of X, we know that
n
E[[Yall < 3" E[ X4l < +oc.
k=0
Next, since 7 is a F-stopping time, we have for any £k =0,1,--- ,n,
(r=k}eFrCFn {r>n—-1}={r<n-1}Y € F,_1 C Fn.

Then Xy 1,y is Fi-measurable, hence Fp-measurable and X, 1, 1} is also Fp-measurable.
Thus by (5), we have Y,, is F,,-measurable.
14



Finally, we prove that for any n € N
E[Y,41]|Fn] =Y, as.

By (5), we have

ElYni1|Fal = ED | Xilrmiy + Xnp1Lirony [ Fo) = D Xplgrpy + E[Xp1 | Fall oy
k=0 k=0
n—1

= ZXk]]'{T:k}+Xn]]'{T>’I’L} =Y, as.
k=0

When X is martingale and 7 is a stopping w.r.t. the same filtration, it follows that
E[X,nn] = E[Xo].

The question is that whether one has E[X;] = E[X].
In order to answer the question, we introduce a version of the dominated convergence theorem
below.

Lemma 2.16. Let {Z,}n>0 be a sequence of random variables with lim, .o Z, = Z a.s. for
some random variable Z and sup, ey |Zn| < M a.s. for some constant M > 0, then

lim E[Z,] = E[Z].

n—o0

Proof. Let us denote that X,, = infy>,(2M — |Z; — Z|) for any n € N, then it is clear that
0< X, <X,41 foralln>1and lim,—o X, =2M a.s.
By Lemma 1.10, we have

lim E[X,] = E[lim X,] = 2M,

n—o0 n—r0o0
Then we know that
lim E[|Z, — Z]] < lim E[sup \Zy — Z@ — — lim IE[ inf (2M — |Z — Z]) — QM}
n—o0 n—o0 k>n n—00 k>n
— — lim B jnf 2M — |2 — Z])| +2M = - lim E[X,] +2M
n—o0 k>n n—00
- —E[ lim Xn] YoM = —E[ lim inf (2M — |Z,€—Z|)} oM
n—o0 n—oo k>n

= —E[2M]+2M = 0.

Hence, we have
lim E[Z,] = E[Z].

n—o0

O]

Theorem 2.2. Let F be a fized filtration, X be a F-martingale, and 7 be a F-stopping time.
Assume that T is bounded by some constant m > 0, or T < oo and the process (Xran)n>0 is
uniformly bounded. Then
E[X,] = E[Xo].
15



Proof. First, we claim that
lim E[X 1] = E[X/]. (7)

n—oo

By Theorem 2.1, we have X;A. is a F-martingale, then for any n € N,
E[Xrn] = E[Xo],
which combined with (7), implies that
E[X-] = E[Xq].

Then it remains to prove the claim (7).

If 7 is bounded by some constant m > 0, then for any n > m, we have X, r, = X, hence
(7) remains true.

If (X7An)n>0 is uniformly bounded, by Lemma 2.16 and lim,,_,oc X7an = X7 a.s., (7) remains
true. O

Example 2.17. Let (§)r>1 be a sequence of i.i.d. random variables, x € N be a positive integer,
and

n
X, = z+ ng.
k=1

Let us define
T = inf{nZO :Xng()oanzN}.

Assume T < 0o, we can then compute the value ofE[XT] and ]P’[XT = 0].

2.2 Convergence of martingale

Theorem 2.3. Let X be a submartingale or supermartingale such that sup,>qE[|X,]] < oo.
Then

lim X, = X, for some r.v. Xoo € L.

n—oQ

Proof. We will prove the case when X is a supermartingale, and the submartingale case follows
by taking —X as a supermartingale. Recall that the limit of a sequence of real numbers (X,,)n>1
does not exist if and only if one of the following holds:

1. lim,— oo X, = 00
2. limy, oo X,, = —00

3. lim X, < limp—se0 Xon.

=——nNn—0o0

Set A1 = {w : limy o0 Xp(w) = 400}, Ay = {w : limy oo Xp(w) = —o0}, A = {w :
lim,, . Xp(w) < +1imy 00 Xn(w)}. If P[A1] = P[A3] = P[A3] = 0, then the result follows.

Given € > 0, we first assume that P[4;] > ¢ > 0. Then VM > 0,3N such that X,, > M
for ¥n > N. We know that E[|X,|]] > E[|X,|14,] > Me > C for large enough M, where
C = sup,,;>o E[|X,|]. This leads to a contradiction that C' = sup,~¢E[|X,|] < oo and we can
conclude that P[A;] = 0. Similarly, we can prove P[As] = 0. -

16



To show P[A3] = 0, choose two rational numbers a and b such that lim,, ,
lim,, 00 Xy, We introduce two sequences of stopping times (¢,)n>1, (Tn)n>1 by:

X, <a<b<

o1 = inf{n>1:X, <a}

7 = inf{n >0y : X, > b}
o9 = inf{n>m:X, <a}
T = inf{n > o9 : X,, > b}.

It can be observed that at time 7, the process X has crossed [a,b] once, and at time 79, the
process X has crossed [a, b] twice. Let U, (a,b) := max{k : 7, < n}.
Claim that E[U,,(a,b)] < =l 1f this holds, then sup,,s; E[Un(a,b)] < sup,,s; Szl
We know by Monotone Convergence Theorem that
E[| X, —
E[lim Up(a,b)] = lim E[Un(a,0)] < supoiin=all o

n—00 n—00 n>1 b—a

Thus lim, 0 Up(a,b) < 0o a.s., and P[ lim,, , . X, < a < b <lim, s X, ] = 0. We then find
from subadditivity that

]P)[AS] = P[hﬂ Xn < m*Xn]

n—oo n—oo

= PUgep {lim X, <a<b< th}]

a,beQ n—oo

< ) Pllim X, <a<b< lim X,]

a<b n—oo n—oo
a,beQ
= 0.
Finally, we prove E[U,,(a,b)] < W' Let Hy, == 3.0, 1g,cher, and Vy, := Y070 Hy(Xpi1—

Xk). We claim that V' = (V},)n,>1 is a supermartingale. Indeed,
E[Vit1 — ValFn] = HE[X 41 — X Fn] <0

Thus we know that V;, > (b —a) - Uy(a,b) — |X,, — a| by taking the first term and the second
term as profit from the crossing event and loss of the last investment, respectively. Then

0 > E[V,] > E[(b—a)Uy(a,b)] — E[|X, — af].
We obtain the desired result. O

Theorem 2.4. Let X be a martingale such that sup, > E[|X,|*] < co. Then

lim X, = X, for some r.v. Xo € L?.

n—oo

and
lim E[| X, — Xoo|?] =

n—oo

Proof. Recall from Cauchy-Schwarz inequality that sup,,>; E[|X,[] < sup,>; /E[|X,[?] < oo.
Then lim,, o, X, exists by 2.3.

17



We first denote that AX,, := X,, — X,,_1,n > 1. We claim that

E[X?] = E[X2] + i E[AX?].
k=1

Indeed, X,, = Xo + AX; +---+ AX,, then

n
X2=X{+AXT+- -+ AXI+ ) AXAX;+ ) 2X0AX;

it i=1
1<i,j<n

and
E[XoAX;] = E[E[XoAX;|Fi—1]]

E[XoE[A[|Fi-1]]
= 0.

Let ¢ < j, we know that

E[AX;AX)] = E[E[AX;AX;[F;-1]]
= E[AX;E[AX;|Fj-1]]

e

Thus,

lim E[X;] = E[X3]+ ) E[AX}] < C < 4+

n—00
k=1

where C' := sup,,> E[|X,|*] < co. Therefore, for m > n,

m

E[(Xm_Xn)Q] = E[( Z AXk)Q]

= E[ ) AXP+E[ Y AXAX]]

k=n+1 1#]
n+1<7,5<m

= Z E[AX?] — 0, as m,n — oo.
k=n+1

Then (X,)n>1 is a Cauchy sequence in L? space. From the completeness of L?, we know by 1.9
that X,, converges to Xo in L? space, i.e. lim, o E[| X, — Xo|?] = 0.
O

Theorem 2.5 (Law of large number). Let ({;)r>1 be a sequence of i.i.d. random variables, such
that E[|&;]] < co. Then

1 n
gzﬁk — E[X4], as.
k=1
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We will use the theorem of convergence of martingale to prove the above theorem.

Stochastic Gradient Algorithm (Robins-Monro algorithm)

Let (Xg)r>1 be a sequence of i.i.d. random variables with the same law of X. Then we give
the stochastic gradient algorithm

Okr1 = O — Y1 F(O, Xpy1), Yk €N (8)

where F : R? x R — R? satisfies E[F(6, X)] = f(6).
To make the algorithm converges, we make the following assumptions:

Assumption 2.6. o Y >0, >0 k=100, Yore Ve < 400
o There exists a point 0* € R? such that

(O, — 07, f(0)) >0, V O # 6"

e F' is uniformly bounded by some constant C > 0.

Theorem 2.7. Given F : RI xR — R4, f: R — R, 0y € R and constants {7y }x>1, we
define a sequence of random variables {0y }r>1 by (8) iteratively, then under Assumption 2.6,
hmkﬁoo Gk =0* a.s.

Remark 2.18. If g : R? — R is strictly convez, 0* is the minimizer of g(0), then for any 0 # 0,
(0 —0*,Vg(0)) > 0.
Proof. Let us define the F-predictable process (Sy)n>0 by

n—1

Sp = Z71%+1E[‘F(9k7Xk+1)’2‘]:’“]’
k=0

where Fy = {¢,Q}, Fr = o(Xy,---,Xy) for any £ > 1 and F := (Fj)g>0. Then by the
uniformly boundedness of F', we have

n—1 00
Sn < Z'YI%HCQ = C2ZVI%+1-
k=0 k=0

Hence by the martingale convergence theorem, we know the existence of Sy := limy,_,+ S, and
[o¢] (o @]
Seo = Y VB[ F Ok, Xer)P|Fi] < C*) iy as.
k=0 k=0

Next, we define the adapted process (Z,)n>0 by Z, := |0, — 0*|> — S, for any n € N and we
claim that (Z,)n>0 is a F-supermartingale. First, observe that

E[|Zn]] < E[ISa| + 2/6"|* + 2/0a]7]

00 n—1 2
< O i 2007+ 2E[ 00+ > Vet 1F (O, Xpi1) ]
k=0 k=0

oo
C* ) visr + 20671 + 4160]” + 4nE[| S, ]
k=0

IN

[o.¢]
(4n +1)C? Y iy + 210% + 4]60]* < oo.
k=0

IN
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Next, for any n € N,

ElZni1|Fa] = Ellfns1 — 07 = Sni1|Fal]
= — Spt1+ |0 — 0*|2 + El|vn+1F (0, Xn—i-l)’ |l
= 2E[(0n — 6", Y41 F(On, Xn11)) | Fn]
= —Ont1t ’971 - 0*|2 + EH'YnJrlF(‘gna Xn+1)’ |‘7:n] - 2’7n+1<0n - 9*, f(en»
— Ontl T+ wn - 0*|2 + E[”Yn—l—lF(em Xn-i-l)’ |~7:n]
= Zp a.s.

IN

Now let K := C? Yoo ’y,%ﬂ, we have (Z,, + K)p>0 is a positive supermaringale and

supE[|Z, + K|] = supE[Z, + K] < E[Zy+ K] < oo.
n>0 n>0

By the martingale convergence theorem, if follows that

lim Z, + K = Zo + K, for some r.v. Zs, € L.

n—oo

Then let L := Sy 4+ Zso, we know that
lim |6, —0*|> = L a.s.
n—oo

and we claim that L =0 a.s.

Let A5 := {w: L(w) > 0}, then it is sufficient to prove that P[As] = 0 for any 6 > 0.

We assume by contradiction that P[As] > 0, then n := infs<g, _gej2<or (O — 0%, f(0k)) > 0
on Ag, and we have

D a1k — 05, f(0k)) = D Aps1n = +00, on A,

k=0

Then the monotone convergence theorem gives that

D Elyesr (0 — 0%, f(01))) = +o0.
k=0

However, by the definition of the algorithm, we have

ZE[’Yk+1<9k — 0%, f(0r))]

k=0

= > E[(fk — 0, v 1 F (O, Xii1))]
k=0

= fZ (1051 — 07> — 10k — 07 — Pyt F Ok, Xi1) ]
k=

N[ —

_ ( lim E[6; — 0°[2] — E[|6y — 672 nykH]E |F (05, Xps1)] })

5 n—o00
k=0
1 *|2
=3 E[Se + Zoo — |60 — 07| — Sxo)
1
= SE[Zoc — |60 — 0*|?] < oc.
Now we have a contradiction and complete the proof. O
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3 Markov Chain

blabla
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