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1 Probability theory review

1.1 Basic probability theory

A probability space is a triple (Ω,F ,P), where

• Ω is the sample space, which is a (non-empty) set.

• F is a a σ-�eld, which is a space of subsets of Ω satisfying

� Ω ∈ F ,
� A ∈ F =⇒ AC ∈ F ,
� An ∈ F , n ≥ 1 =⇒ ∪n≥1 An ∈ F .

A set A ∈ F is called an event.

• P : F −→ [0, 1] is a probability measure, i.e.

� P[Ω] = 1,

� If {An, n ≥ 1} ⊂ F be such that Ai ∩ Aj = ∅ for all i 6= j, then P[∪n≥1An] =∑
n≥1 P[An].

Example 1.1. (i) Ω = {1, 2, · · · , n}, F := σ({1}, · · · , {n}), P[{i}] = 1
n , for each i = 1, · · · , n.

In above, σ({1}, · · · , {n}) means the smallest σ-�eld containing all events {1}, · · · , {n}. In this

case, it is the space of all subsets of Ω.

(ii) Ω = R, F := B(R) is the Borel σ-�eld on R, i.e. the smallest σ-�eld which contains all

open set in R. For some density function ρ : R −→ R+, a probability measure P can be de�ned,

�rst for all intervals (a, b) with a ≤ b, by P[(a, b)] :=
∫ b
a ρ(x)dx, and then extended on the Borel

σ-�eld F .

A random variable is a map X : Ω −→ R satisfying

X−1(A) := {ω ∈ Ω : X(ω) ∈ A} ∈ F , for all A ∈ B(R)⇐⇒ {X ≤ x} ∈ F , for all x ∈ R.

The distribution function of X is given by

F (x) := P[X ≤ x], x ∈ R.

Example 1.2. (i) A discrete random variable X:

pi = P[X = xi], i ∈ N,
∑
i∈N

pi = 1.

(ii) A continuous random variable X (with continuous probability distribution), one has the den-

sity function

ρ(x) = F ′(x), x ∈ R.

(iii) There exists a some random variable, whoseis distribution neither discrete nor continuous.
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Expectation Let X be a (discrete or continuous) random variable, the expectation of E[f(X)]
is de�ned as follows:

• When X is a discrete random variable such that P[X = xi] = pi for i ∈ N. Then

E[f(X)] :=
∑
i∈N

f(xi)P[X = xi] =
∑
i∈N

f(xi)pi.

• When X is a continuous random variable with density ρ : R −→ R+. Then

E[f(X)] :=

∫
R
f(x)ρ(x)dx, whenever the integral is well de�ned.

Remark 1.3. In general case, one de�nes the expectation as the following Lebesgue integration:

E[f(X)] :=

∫
Ω
f(X(ω))dP(ω).

A rigorous de�nition of the above integral needs the measure theory, which is not required in this

course.

For two (square integrable) random variables X and Y , their variance and co-variance are

de�ned by

Var[X] := E
[(
X − E[X]

)2]
, Cov[X,Y ] := E

[(
X − E[X]

)(
Y − E[Y ]

)]
.

The characteristic function of X is de�ned by Φ(θ) := E[eiθX ].

Independence The events A1, · · · , An ∈ F are said to be (mutually) independent if

P
[
A1 ∩ · · · ∩An] =

n∏
i=1

P[Ai].

Next, we say that the σ-�elds F1, · · · ,Fn are (mutually) independent if

P
[
A1 ∩ · · · ∩An] =

n∏
i=1

P[Ai], for all A1 ∈ F1, · · · , An ∈ Fn.

Finally, we say that random variables X1, · · · , Xn are (mutually) independent if

σ(X1), · · · , σ(Xn) are independent.

Remark 1.4. (i) The σ-�eld σ(X1) is de�ned as the smallest σ-�eld containing all events

{X1 ≤ x} := {ω ∈ Ω : X1(ω) ≤ x}, for all x ∈ R.

As X1 is a random variable, it is clear that σ(X1) ⊂ F .

(ii) We say that the a random variable X1 is independent of F2 if σ(X1) and F2 are independent.
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Example 1.5. Let us consider the case, where Ω = {0, 1, 2, 3}, P[X = ω] = 1
4 , de�ne

X1(ω) =

{
0 ω ∈ {0, 2},
1 ω ∈ {1, 3},

X2(ω) =

{
0 ω ∈ {0, 1},
1 ω ∈ {2, 3}.

In this case, σ(X1) = {∅,Ω, {0, 2}, {1, 3}}, and σ(X2) = {∅,Ω, {0, 1}, {2, 3}}. Moreover, it can

be checked that X1 is independent of σ(X2). For example, one can check that

P
[
{X1 = 0} ∩ {X2 = 0}

]
= P

[
{0}
]

= P
[
{0, 2}

]
P
[
{0, 1}

]
=

1

4
,

which implies that the two events {X1 = 0} and {X2 = 0} are independent. Similarly, one can

check that {X1 = i} is independent of {X2 = j} for all i, j ∈ {0, 1}. This is enough to show that

X1 and X2 are independent.

Lemma 1.6. If X1, · · · , Xn are independent, fi are measurable functions. Then f1(X1), · · · , fn(Xn)
are independent.

Proof. Let us consider the case n = 2. To prove that f1(X1) is independent of f2(X2), it is enough
to check that the event {f1(X1) ≤ y1} is independent of the event {f2(X2) ≤ y2} for all real
numbers y1, y2 ∈ R. At the same time, we notice that {fi(Xi) ≤ yi} = {Xi ∈ f−1

i ((−∞, yi])} ∈
σ(Xi). Since σ(X1) is independent of σ(X2), this is enough to conclude the proof.

Lemma 1.7. If X1, · · · , Xn are independent, then

E[f1(X1) · · · fn(Xn)] = E[f1(X1)] · · ·E[fn(Xn)].

Consequently,

Var[X1 + · · ·+Xn] = Var[X1] + · · ·+ Var[Xn].

Cov[fi(Xi), fj(Xj)] = 0, i 6= j.

Remark 1.8. : The inverse may not be correct. Let us consider a random variable X1 ∼ U [−1, 1]
follows the uniform distribution on [−1, 1], whose density function is given by ρ(x) = 1

21{−1≤x≤1}.
Let X2 := X2

1 . By direct computation, one can check that

E[X1X2] = E[X1]E[X2], and hence Cov[X1, X2] = 0.

Nevertheless, it is clear that X1 and X2 are not independent.

We next provide some notions of convergence of random variables. Let (Xn)n≥1 a sequence

of random variables, ans X be a r.v.

• Almost sure convergence: We say Xn converges almost surely to X if

P
[

lim
n→∞

Xn = X
]

= 1.

• Convergence in probability: We say Xn converges to X in probability if, for any ε > 0,

lim
n→∞

P[|Xn −X| ≥ ε] = 0.

• Convergence in distribution: We say Xn converges to X in distribution if, for any bounded

continuous function f ,
lim
n→∞

E[f(Xn)] = E[f(X)].
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• Convergence in Lp (p ≥ 1) space: Assume E[|Xn|p] <∞, we say Xn converges to X in Lp

space if

lim
n→∞

E
[
|Xn −X|p

]
= 0.

Lemma 1.9 (Relations between the di�erent notions of the convergence). One has

Cvg a.s. =⇒ Cvg in prob. =⇒ Cvg in dist.,

Cvg in Lp =⇒ Cvg in prob.

Cvg in prob. =⇒ Cvg a.s. along a subsequence.

Lemma 1.10 (Monotone convergence theorem). Assume that 0 ≤ Xn ≤ Xn+1 for all n ≥ 1,
then

E
[

lim
n→∞

Xn

]
= lim

n→∞
E[Xn].

Remark 1.11. In practice, we may have Xn := fn(X) for a sequence (fn)n≥1 satisfying 0 ≤
f1 ≤ f2 ≤ · · · . In this case, we have

E
[

lim
n→∞

fn(X)
]

= lim
n→∞

E[fn(X)].

Theorem 1.1 (Law of Large Number). Assume that (Xn)n≥1 is an i.i.d. sequence with the same

distribution of X and such that E[|X|] <∞. Then

lim
n→∞

Xn := lim
n→∞

1

n

n∑
k=1

Xk = E[X], a.s.

Theorem 1.2 (Central Limit Theorem). Assume that (Xn)n≥1 is an i.i.d. sequence with the

same distribution of X and such that E[|X|2] <∞. Then

√
n
(
Xn − E[X]

)√
Var[X]

converges in distribution to N(0, 1).

We �nally provide some useful inequalities.

Lemma 1.12 (Jensen inequality). Let X be a r.v., φ be a convex function. Assume that E[|X|] <
∞ and E[|φ(X)|] <∞. Then

φ(E[X]) ≤ E
[
φ(X)

]
.

Proof. As φ is a convex function, there exists an a�ne function g(x) = ax+ b such that

φ(E[X]) = g(E[X]), and φ(x) ≥ g(x) for all x ∈ R.

Therefore,

E[φ(X)] ≥ E[g(X)] = E[aX + b] = aE[X] + b = g(E[X]) = φ(E[X]).

Lemma 1.13 (Chebychev inequality). Let X be a r.v., f : R → R+ be an increasing function.

Assume that E[f(X)] <∞ and f(a) > 0. Then

P[X ≥ a] ≤ E[f(X)]

f(a)]
.
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Proof. We will prove this for continuous random variable X, and the proof for discrete random

variable X is essentially the same, replacing integrals with sums. Let ρ(x) be the probability

density function of X. By de�nition, E[f(X)] =
∫∞
−∞ f(x)ρ(x)dx. By monotonicity of f(x), and

the fact that f(x), ρ(x) are non-negative,

E[f(X)] =

∫ ∞
−∞

f(x)ρ(x)dx

=

∫ a

−∞
f(x)ρ(x)dx+

∫ ∞
a

f(x)ρ(x)dx

≥
∫ ∞
a

f(x)ρ(x)dx

≥
∫ ∞
a

f(a)ρ(x)dx

the result follows by taking out the constant f(a) from the integral.

Lemma 1.14 (Cauchy-Schwarz inequality). Let X and Y be two r.v. Assume that E[|X|2] <∞
and E[|Y |2] <∞. Then

E[XY ] ≤
√

E[|X|2]E[|Y |2].

1.2 Conditional expectation

Theorem 1.3. Let (Ω,F ,P) be a probability space, G be a sub-σ-�eld of F , X a random variable.

Assume that E[|X|] <∞. Then there exists a random variable Z satisfying the following:

• E[|Z|] <∞.

• Z is G-measurable.

• E[XY ] = E[ZY ], for all G-measurable bounded random variables Y .

Moreover, the random Z is unique in the sense of almost sure.

De�nition 1.15. We say that the random variable Z given in Theorem 1.3 is the conditional

expectation of X knowing G, and denote

E[X|G] := Z.

When G = σ(Y1, · · · , Yn), for Y = (Y1, · · · .Yn), we also write

E[X|Y1, · · · , Yn] := E[X|G].

In this case, there exists a measurable function f : Rn → R such that E[X|Y ] = f(Y ). To

compute E[X|Y ], it is enough to compute the function:

E[X|Y = y] := f(y), for all y ∈ Rn.

Example 1.16. (i) Discrete case: P[X = xi, Y = yj ] = pi,j with
∑

i,j pi,j = 1. Then

E[X|Y = yj ] =
E[X1Y=yj ]

E[1Y=yj ]
=

∑
i∈N xipi,j∑
i∈N pi,j

.
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Proof. Let us denote f(yj) :=
∑

i∈N xipi,j∑
i∈N pi,j

, then it is enough to show that E[X|Y ] = f(Y ).

First, it is trivial that f(Y ) is σ(Y )-measurable.

Next, by direct computation,

E[|f(Y )|] =
∑
j∈N
|f(yj)|P[Y = yj ] =

∑
j∈N

|
∑

i∈N xipi,j |∑
i∈N pi,j

∑
i∈N

pi,j ≤
∑
i,j∈N

|xi|pi,j = E[|X|] <∞.

Finally, for any σ(Y )-measurable bounded random variable Z, there exists a measurable function

g : Rn → R such that Z = g(Y ), then we have

E[f(Y )g(Y )] =
∑
j∈N

f(yj)g(yj)P[Y = yj ] =
∑
i,j∈N

xig(yj)pi,j = E[Xg(Y )].

This is enough to conclude the proof by the de�nition of conditional expectation.

(ii) Continuous case: Let ρ(x, y) be the density function of (X,Y ), and assume that
∫
R ρ(x, y)dx >

0 for all y ∈ R. Then

E[X|Y = y] =

∫
R xρ(x, y)dx∫
R ρ(x, y)dx

. (1)

Proof. Let us denote the r.h.s. of (1) as f(y). Then it is enough to show that E[X|Y ] = f(Y ).

First, it is clear that f(Y ) is σ(Y )-measurable.

Next,

E[|f(Y )|] =

∫
R

∫
R
|f(y)|ρ(x, y)dxdy =

∫
R

∫
R

∣∣∣∣
∫
R xρ(x, y)dx∫
R ρ(x, y)dx

∣∣∣∣ρ(x, y)dxdy

≤
∫
R

∫
R

∫
R |x|ρ(x, y)dx∫
R ρ(x, y)dx

ρ(x, y)dxdy =

∫
R

∫
R
|x|ρ(x, y)dxdy = E[|X|] <∞.

Finally, for any σ(Y )-measurable bounded random variable Z, there exists a measurable function

g : Rn → R such that Z = g(Y ), then we have

E
[
f(Y )g(Y )

]
=

∫
R

∫
R
f(y)g(y)ρ(x, y)dxdy =

∫
R

∫
R

∫
R xρ(x, y)dx∫
R ρ(x, y)dx

g(y)ρ(x, y)dxdy

=

∫
R

∫
R
xg(y)ρ(x, y)dxdy = E[Xg(Y )].

This shows that E[X|Y ] = f(Y ) by the de�nition of conditional expectation.

Example 1.17. Let X and Y be two independent random variables with the same distribution,

and P[X = ±1] = P[X = ±1] = 1
2 . One can compute that

E[X] = 0, and E[X + Y |Y ] = Y.

We �nally provide some properties of the conditional expectation from its de�nition.

Lemma 1.18. Let X and Y be two r.v. such that E[|X|] <∞ and E[|Y |] <∞, a, b be two real

numbers. Then

E[aX + bY |G] = aE[X|G] + bE[Y |G].
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Proof. It is enough to verify that aE[X|G]+bE[Y |G] satis�es the three properties in the de�nition
of the conditional expectation E[aX + bY |G].

First, aE[X|G] + bE[Y |G] is obviously G-measurable.

Next, from the de�nition of conditional expectation, we know E[|E[X|G]|],E[|E[Y |G]|] < ∞,

then

E[|aE[X|G] + bE[Y |G]|] ≤ |a|E[|E[X|G]|] + |b|E[|E[Y |G]|] <∞.

Finally, for any G-measurable bounded random variable Z, we know that

E[E[X|G]Z] = E[XZ],E[E[Y |G]Z] = E[Y Z].

Then by linearity of expectation, we have

E[(aE[X|G] + bE[Y |G])Z] = aE[E[X|G]Z] + bE[E[Y |G])Z]

= aE[XZ] + bE[Y Z] = E[(aX + bY )Z].

Lemma 1.19. Let X, Y be r.v. such that E[|X|] < ∞, Y is G-measurable and E[|XY |] < ∞,

then

E[E[X|G]] = E[X], and E[XY |G] = E[X|G]Y.

If X is independent of G, then
E[X|G] = E[X].

Proof. First, by taking Y = 1Ω in the third property in Theorem 1.3, it follows immediately

that E[E[X|G]] = E[X].

To prove E[XY |G] = E[X|G]Y , it is equivalent to verify that E[X|G]Y satis�es the three

properties in the de�nition of conditional expectation for E[XY |G], by the uniqueness of the

conditional expectation.

Let us �rst assume that X and Y are nonnegative. Then for any k ∈ N, then E[X|G] (Y ∧k) is
G-measurable since both of E[X|G] and (Y ∧k) are G-measurable. Moreover, for the integrability,

one has

E[|E[X|G](Y ∧ k)|] ≤ kE[|E[X|G]|] <∞.

Finally, for any bounded G-measurable r.v. Z, (Y ∧ k)Z is bounded and G-measurable, then one

has

E[E[X|G](Y ∧ k)Z] = E[X(Y ∧ k)Z] = E[E[X(Y ∧ k)|G]Z].

Hence it follows that

E[X(Y ∧ k)|G] = E[X|G](Y ∧ k).

Then by monotone convergence theorem for conditional expectation (see Lemma 1.21 below),

one obtains that

E[X|G]Y = lim
k→+∞

E[X|G](Y ∧ k) = lim
k→+∞

E[X(Y ∧ k)|G] = E[ lim
k→+∞

X(Y ∧ k)|G] = E[XY |G].
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When X, Y are not always nonnegative, one can write X = X+−X−, Y = Y +−Y −, where
X+, X−, Y + and Y − are all nonneagive random variables. Then

E[X|G]Y = E[X+ −X−|G](Y + − Y −)

= E[X+|G]Y + − E[X−|G]Y + − E[X+|G]Y − + E[X−|G]Y −

= E[X+Y +|G]− E[X−Y +|G]− E[X+Y −|G] + E[X−Y −|G]

= E[(X+ −X−)(Y + − Y −)|G]

= E[XY |G].

Moreover, E[X|G]Y is G-measurable since both of E[X|G] and Y are G-measurable. One can

also check the integrability condition by

E[|E[X|G]Y |] = E[|E[XY |G]|] <∞,

which proves that E[XY |G] = E[X|G]Y .

Finally, when X is independent of G, we consider E[X] as a constant r.v., and check that it

satis�es the properties in the de�nition of conditional expectation E[X|G]. As a constant r.v.,

E[X] is clearly G-measurable and integrable. Moreover, for any bounded G-measurability r.v. Z,
we have by linearity of expectation

E[E[X]Z] = E[XZ].

This proves that E[X] is the conditional expectation of X knowing G.

Lemma 1.20. Let X be a random variable, ϕ be a convex function. Then

E[ϕ(X)|G] ≥ ϕ(E[X|G]), a.s.

Proof. We �rst prove monotonicity for conditional expectation. Claim that if X,Y are r.v. such

that E[|X|], E[|Y |] <∞ and X ≥ Y , then E[X|G] ≥ E[Y |G] a.s. To see this, set Z := E[X−Y |G]
and A := {ω : Z < 0}. Since A ∈ G by de�nition and (X−Y ) ≥ 0 a.s., E[Z1A] = E[(X−Y )1A] ≥
0 so P[Z < 0]] = P [E[X|G] < E[Y |G]] = 0 as claimed.

Recall that a function f : R → R is convex if and only if there exits a family {fn} of a�ne

functions (i.e. fn(x) = anx+ bn, for some an, bn ∈ R) such that

f(x) = sup
n
fn(x), for all x ∈ R.

Thus,

E[ϕ(X)|G] ≥ E[anX + bn|G] = anE[X|G] + bn.

By taking supremum over both sides, it follows that

E[ϕ(X)|G] ≥ sup
n
{anE[X|G] + bn} = ϕ(E[X|G]).

Lemma 1.21 (Monotone convergence theorem). Let (Xn, n ≥ 1) be a sequence of integrable

random variable such that 0 ≤ Xn ≤ Xn+1, a.s. Then

lim
n→∞

E[Xn|G] = E[ lim
n→∞

Xn|G].
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Proof. Notice that by the increasing of {Xn}n for almost all ω, we have

E[Xn|G] ≤ E[ lim
n→∞

Xn|G] a.s.

Then with the same procedure in the proof of conditional Jensen's Inequality, we can prove that

0 ≤ E[Xn|G] ≤ E[Xn+1|G] a.s. and we get the existence of limn→∞ E[Xn|G]. Taking the limit in

the above inequality, we have

lim
n→∞

E[Xn|G] ≤ E[ lim
n→∞

Xn|G] a.s.

Then the monotone convergence theorem (Lemma 1.10) implies that

E[ lim
n→∞

E[Xn|G]] = lim
n→∞

E[E[Xn|G]] = lim
n→∞

E[Xn] = E[ lim
n→∞

Xn] = E[E[ lim
n→∞

Xn|G]].

Hence we conclude the proof.

Lemma 1.22. Let X be an integrable random variable, and G := {∅,Ω}. Then

E[X|G] = E[X].

Proof. It is equivalent to prove that any G-measurable random variable Z is a constant random

variable a.s.

By contradiction, we assume that Z is not a constant random variable. Then there exist

some constants C1, C2 ∈ R with C1 < C2 such that

{Z = C1} 6= φ, {Z = C2} 6= φ.

Hence we have {Z ≤ C1} /∈ G, which gives the fact that Z is not G-measurable. Now since this

is a contradiction, we complete the proof.

Lemma 1.23. Let X be an integrable random variable, and G1 ⊂ G2 be two sub-σ-�eld of F .
Then

E[E[X|G2]|G1] = E[X|G1].

Proof. Set Z := E[E[X|G2]|G1], it is enough to verify that Z satis�es the three properties in the

de�nition of E[X|G1].

First, Z is obviously G1-measurable and integrable, as it is de�ned as the conditional expec-

tation of some random variable knowing G1. Moreover, for any G1-measurable bounded random

variable Y , we know by Lemma 1.19 that

E[ZY ] = E[ E[ E[X|G2]|G1]Y ] = E[ E[ E[X|G2]Y |G1]]

= E[ E[X|G2]Y ] = E[ E[XY |G2]] = E[XY ].

This concludes the proof.

2 Discrete time martingale

De�nition 2.1. In a probability space (Ω,F ,P), a stochastic process is a family (Xn)n≥0 of

random variables indexed by time n ≥ 0 (or tn, n ≥ 0). A �ltration is family F = (Fn)n≥0 of

sub-σ-�eld of F such that Fn ⊂ Fn+1 for all n ≥ 0.
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Example 2.2. Let B = (Bn)n≥0 be some stochastic process, then the following de�nition of Fn
provides a �ltration (Fn)n≥0:

Fn := σ(B0, B1, · · · , Bn).

In particular, let B0 = 0, Bn =
∑n

k=1 ξk where (ξk)k≥1 is an i.i.d. sequence of random variables

with distribution P[ξk = ±1] = 1
2 . Then

F0 = {∅,Ω}, F1 = F0 ∪ {A,Ac}, with A := {ξ1 = 1}, Ac = {ξ1 = −1}, · · ·

De�nition 2.3. Let X = (Xn)n≥0 be a stochastic process, F = (Fn)n≥1 be a �ltration.

We say X is adapted to the �ltration F if

Xn ∈ Fn (i.e. Xn is Fn-measurable), for all n ≥ 0.

We say X is predictable w.r.t. F if

Xn ∈ F(n−1)∨0 for all n ≥ 0.

Remark 2.4. Let F be the �ltration generated by the process B as in the above example. If X
is F-adapted, then Xn ∈ Fn = σ(B0, · · · , Bn) so that

Xn = gn(B0, · · · , Bn), for some measurable function gn.

Similarly, if X is F-predictable, then Xn+1 ∈ Fn so that

Xn+1 = g′n+1(B0, · · · , Bn), for some measurable function g′n+1.

Example 2.5. Let (ξk)k≥1 be a sequence of i.i.d random variable, such that P
[
ξk = ±1

]
= 1

2 .

Then the process X = (Xn)n≥0 de�ned as follows is called a random walk:

X0 = 0, Xn =

n∑
k=1

ξk.

Remark 2.6. In above examples, a stochastic process usually starts from time 0, but we can also

consider stochastic process starting from some time tk.

De�nition 2.7. Let X = (Xn)n≥0 be a stochastic process, F = (Fn)n≥1 be a �ltration.

We say X is a martingale (w.r.t. F) if X is F-adapted, each random variable Xn is integrable,

and

E[Xn+1|Fn] = Xn.

We say X is a sub-martingale (w.r.t. F) if X is F-adapted, each random variable Xn is

integrable, and

E[Xn+1|Fn] ≥ Xn.

We say X is a super-martingale (w.r.t. F) if X is F-adapted, each random variable Xn is

integrable, and

E[Xn+1|Fn] ≤ Xn.

Notice that martingale X (w.r.t. to some �ltration F) is a sub-martingale, and at the same

time a super-martingale.
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Example 2.8. Recall that the random walk X = (Xn)n≥0 is de�ned as follows:

X0 = 0, Xn =
n∑
k=1

ξk,

where (ξk)k≥1 be a sequence of i.i.d. of random variable such that P[ξ = ±1] = 1
2 .

Then

• X is a martingale;

• (X2
n)n≥0 is a sub-martingale;

• (X2
n − n)n≥0 is a martingale.

Proof. First, it is clear that X is F-adapted with respect to the natural �ltration F generated by

X, and Xn is integrable for all n ≥ 0. Then by using Lemma 1.19,

E[Xn+1|Fn] = E[Xn + ξn+1|Fn]

= E[Xn|Fn] + E[ξn+1|Fn]

= Xn + E[ξn+1]

= Xn.

Next, as (X2
n)n≥0 is F-adapted, and X2

n is integrable, for ∀n ≥ 0, we compute that

E[X2
n+1|Fn] = E[(Xn + ξn+1)2|Fn]

= E[X2
n + 2Xnξn+1 + ξ2

n+1|Fn]

= E[X2
n|Fn] + 2E[Xnξn+1|Fn] + E[ξ2

n+1|Fn]

= X2
n + 2XnE[ξn+1|Fn] + E[ξ2

n+1]

= X2
n + 1.

Finally, Yn := X2
n − n is F-adapted, and Yn is integrable, then

E[Yn+1|Fn] = E[X2
n+1 − (n+ 1)|Fn]

= X2
n + 1− (n+ 1)

= X2
n − n

= Yn.

Example 2.9. Let (Zk)k≥1 be a sequence of random variable such that Zk ∼ N(0, 1), and σ ∈ R,
X0 ∈ R be real constants. Let Fn := σ(Z1, · · · , Zn), and

Xn := X0 exp
(
σ

n∑
k=1

Zk −
1

2
nσ2

)
.

Then (Xn)n≥1 is a martingale (w.r.t. F).

Example 2.10. Let F = (Fn)n≥1 be a �ltration, Z be an integrable random variable, and

Xn := E
[
Z
∣∣Fn].

Then (Xn)n≥1 is a martingale (w.r.t. F).
12



Lemma 2.11. Let F be a �ltration, and X be a martingale w.r.t. F. Let FX denote the natural

�ltration generated by X. Then X is also a martingale w.r.t. FX .

Proof. Given that X is F-adapted, we know that Xs ∈ Fn for s ∈ {0, 1, · · · , n}. De�ne FXn as

the σ-�eld generated by X0, X1, · · · , Xn, i.e. FXn := σ(X0, X1, · · · , Xn), then FXn ⊂ Fn. We

know that X is FX -adapted, Xn is integrable for ∀n ≥ 0, and

E[Xn+1|FXn ] = E[ E[ Xn+1|Fn]|FXn ] = E[Xn|FXn ] = Xn,

then it is clear that X is a martingale with respect to FX .

Notice that a martingale X is associated to some �ltration F. However, when the �ltration is

not speci�ed, we say X is a martingale means that X is a martingale w.r.t. the natural �ltration

generated by X. In this case, we can also write

E
[
Xn+1

∣∣X0, · · · , Xn

]
= Xn, for all n ≥ 0.

Lemma 2.12. Let X be a martingale w.r.t. the �ltration F, then

E
[
Xm

∣∣Fn] = Xn, for all m ≥ n ≥ 0.

Moreover,

E
[
Xn

]
= E

[
X0

]
, for all n ≥ 0.

Proof. As X is a martingale, we know that E[Xn+1|Fn] = Xn and Fn ⊂ Fn+1. Then by the

tower property in Lemma 1.23,

E[Xn+2|Fn] = E[ E[ Xn+2|Fn+1]|Fn] = E[Xn+1|Fn] = Xn.

The result follows by using the above equation.

2.1 Optional stopping theorem

De�nition 2.13. Let F be a �ltration, a stopping time w.r.t. F is a random variable τ : Ω −→
{0, 1, · · · } ∪ {∞} such that

{τ ≤ n} ∈ Fn, for all n ≥ 0. (2)

Remark 2.14. In place of (2), it is equivalent to de�ne the stopping time by the property:

{τ = n} ∈ Fn, for all n ≥ 0.

Proof. We can write

{τ = n} = {τ ≤ n} \ {τ ≤ n− 1}, (3)

{τ ≤ n} =

n⋃
k=0

{τ = k}. (4)

Now if {τ ≤ n} ∈ Fn for any n ≥ 0, then {τ ≤ n − 1} ∈ Fn−1 ⊂ Fn, hence we know from (3)

that {τ = n} ∈ Fn.
Next, if {τ = n} ∈ Fn for any n ≥ 0, then for any 0 ≤ k ≤ n, {τ = k} ∈ Fk ⊂ Fn, hence we

know from (4) that {τ ≤ n} ∈ Fn.
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Lemma 2.15. Let X be a stochastic process adapted to the �ltration F, and B be a Borel set in

R. Then the hitting time τ de�ned below is a stopping w.r.t. F:

τ := inf{n ≥ 0 : Xn ∈ B},

where inf ∅ = +∞ by convention.

Proof. For any n ∈ N, notice the facts that

{τ = n} = {Xn ∈ B}
⋂ n−1⋂

k=0

{Xk /∈ B},

{τ ≤ n} =
n⋃
k=0

{Xk ∈ B},

{Xk ∈ B} ∈ Fk ⊂ Fn for any k = 0, 1, · · · , n.

It follows that {τ ≤ n} ∈ Fn for any n ≥ 0. Then τ is a stopping time w.r.t. F.

Given a stochastic process X and a stopping time τ w.r.t. some �ltration F.

Xτ∧n(ω) :=

{
Xn(ω) if τ(ω) ≥ n,
Xτ(ω)(ω) if τ(ω) < n.

Theorem 2.1. Let F be �xed �ltration, X be a F-martingale, and τ be a F-stopping time. Then

the process (Xτ∧n)n≥0 is still a F-martingale.

Proof. Let us denote Yn := Xτ∧n for any n ∈ N, then we can write for any n ≥ 0,

Yn =

n−1∑
k=0

Xk1{τ=k} +Xn1{τ≥n}, (5)

=
n−1∑
k=0

Xk1{τ=k} +Xn1{τ>n−1}, (6)

Now we verify the three conditions in the de�nition of martingale.

First, for any n ∈ N, we have by (5)

|Yn| ≤
n∑
k=0

|Xk|.

Then by the integrability of X, we know that

E[|Yn|] ≤
n∑
k=0

E[|Xk|] < +∞.

Next, since τ is a F-stopping time, we have for any k = 0, 1, · · · , n,

{τ = k} ∈ Fk ⊂ Fn, {τ > n− 1} = {τ ≤ n− 1}C ∈ Fn−1 ⊂ Fn.

Then Xk1{τ=k} is Fk-measurable, hence Fn-measurable and Xn1{τ>n−1} is also Fn-measurable.

Thus by (5), we have Yn is Fn-measurable.

14



Finally, we prove that for any n ∈ N

E[Yn+1|Fn] = Yn a.s.

By (5), we have

E[Yn+1|Fn] = E[
n∑
k=0

Xk1{τ=k} +Xn+11{τ>n}|Fn] =
n∑
k=0

Xk1{τ=k} + E[Xn+1|Fn]1{τ>n}

=
n−1∑
k=0

Xk1{τ=k} +Xn1{τ>n} = Yn a.s.

When X is martingale and τ is a stopping w.r.t. the same �ltration, it follows that

E
[
Xτ∧n

]
= E

[
X0

]
.

The question is that whether one has E[Xτ ] = E[X0].
In order to answer the question, we introduce a version of the dominated convergence theorem

below.

Lemma 2.16. Let {Zn}n≥0 be a sequence of random variables with limn→∞ Zn = Z a.s. for

some random variable Z and supn∈N |Zn| ≤M a.s. for some constant M > 0, then

lim
n→∞

E[Zn] = E[Z].

Proof. Let us denote that Xn = infk≥n(2M − |Zk − Z|) for any n ∈ N, then it is clear that

0 ≤ Xn ≤ Xn+1 for all n ≥ 1 and limn→∞Xn = 2M a.s.

By Lemma 1.10, we have

lim
n→∞

E[Xn] = E[ lim
n→∞

Xn] = 2M,

Then we know that

lim
n→∞

E[|Zn − Z|] ≤ lim
n→∞

E
[

sup
k≥n
|Zk − Z|

]
= − lim

n→∞
E
[

inf
k≥n

(2M − |Zk − Z|)− 2M
]

= − lim
n→∞

E
[

inf
k≥n

(2M − |Zk − Z|)
]

+ 2M = − lim
n→∞

E[Xn] + 2M

= − E
[

lim
n→∞

Xn

]
+ 2M = − E

[
lim
n→∞

inf
k≥n

(2M − |Zk − Z|)
]

+ 2M

= − E[2M ] + 2M = 0.

Hence, we have

lim
n→∞

E[Zn] = E[Z].

Theorem 2.2. Let F be a �xed �ltration, X be a F-martingale, and τ be a F-stopping time.

Assume that τ is bounded by some constant m ≥ 0, or τ < ∞ and the process (Xτ∧n)n≥0 is

uniformly bounded. Then

E
[
Xτ

]
= E

[
X0

]
.
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Proof. First, we claim that

lim
n→∞

E[Xτ∧n] = E[Xτ ]. (7)

By Theorem 2.1, we have Xτ∧· is a F-martingale, then for any n ∈ N,

E[Xτ∧n] = E[X0],

which combined with (7), implies that

E[Xτ ] = E[X0].

Then it remains to prove the claim (7).

If τ is bounded by some constant m ≥ 0, then for any n ≥ m, we have Xτ∧n = Xτ , hence

(7) remains true.

If (Xτ∧n)n≥0 is uniformly bounded, by Lemma 2.16 and limn→∞Xτ∧n = Xτ a.s., (7) remains

true.

Example 2.17. Let (ξk)k≥1 be a sequence of i.i.d. random variables, x ∈ N be a positive integer,

and

Xn := x+
n∑
k=1

ξk.

Let us de�ne

τ := inf
{
n ≥ 0 : Xn ≤ 0 or Xn ≥ N

}
.

Assume τ <∞, we can then compute the value of E
[
Xτ

]
and P

[
Xτ = 0

]
.

2.2 Convergence of martingale

Theorem 2.3. Let X be a submartingale or supermartingale such that supn≥0 E[|Xn|] < ∞.

Then

lim
n→∞

Xn = X∞, for some r.v. X∞ ∈ L1.

Proof. We will prove the case when X is a supermartingale, and the submartingale case follows

by taking −X as a supermartingale. Recall that the limit of a sequence of real numbers (Xn)n≥1

does not exist if and only if one of the following holds:

1. limn→∞Xn =∞

2. limn→∞Xn = −∞

3. limn→∞Xn < limn→∞Xn.

Set A1 = {ω : limn→∞Xn(ω) = +∞}, A2 = {ω : limn→∞Xn(ω) = −∞}, A3 = {ω :
limn→∞Xn(ω) < + limn→∞Xn(ω)}. If P[A1] = P[A2] = P[A3] = 0, then the result follows.

Given ε > 0, we �rst assume that P[A1] ≥ ε > 0. Then ∀M > 0,∃N such that Xn ≥ M
for ∀n ≥ N . We know that E[|Xn|] ≥ E[|Xn|1A1 ] ≥ Mε > C for large enough M , where

C = supn≥0 E[|Xn|]. This leads to a contradiction that C = supn≥0 E[|Xn|] < ∞ and we can

conclude that P[A1] = 0. Similarly, we can prove P[A2] = 0.
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To show P [A3] = 0, choose two rational numbers a and b such that limn→∞Xn ≤ a < b ≤
limn→∞Xn, we introduce two sequences of stopping times (σn)n≥1, (τn)n≥1 by:

σ1 := inf{n ≥ 1 : Xn ≤ a}
τ1 := inf{n ≥ σ1 : Xn ≥ b}
σ2 := inf{n ≥ τ1 : Xn ≤ a}
τ2 := inf{n ≥ σ2 : Xn ≥ b}.

It can be observed that at time τ1, the process X has crossed [a, b] once, and at time τ2, the

process X has crossed [a, b] twice. Let Un(a, b) := max{k : τk ≤ n}.
Claim that E[Un(a, b)] ≤ E[|Xn−a|]

b−a . If this holds, then supn≥1 E[Un(a, b)] ≤ supn≥1
E[|Xn−a|]

b−a .

We know by Monotone Convergence Theorem that

E[ lim
n→∞

Un(a, b)] = lim
n→∞

E[Un(a, b)] ≤ sup
n≥1

E[|Xn − a|]
b− a

<∞.

Thus limn→∞ Un(a, b) <∞ a.s., and P [ limn→∞Xn ≤ a < b ≤ limn→∞Xn ] = 0. We then �nd

from subadditivity that

P[A3] = P[ lim
n→∞

Xn ≤ lim
n→∞

Xn ]

= P[∪ a<b
a,b∈Q

{ lim
n→∞

Xn ≤ a < b ≤ lim
n→∞

Xn}]

≤
∑
a<b
a,b∈Q

P[ lim
n→∞

Xn ≤ a < b ≤ lim
n→∞

Xn]

= 0.

Finally, we prove E[Un(a, b)] ≤ E[|Xn−a|]
b−a . LetHk :=

∑∞
i=1 1σi≤k<τi and Vn :=

∑n−1
k=0 Hk(Xk+1−

Xk). We claim that V = (Vn)n≥1 is a supermartingale. Indeed,

E[Vn+1 − Vn|Fn] = HnE[Xn+1 −Xn|Fn] ≤ 0.

Thus we know that Vn ≥ (b − a) · Un(a, b) − |Xn − a| by taking the �rst term and the second

term as pro�t from the crossing event and loss of the last investment, respectively. Then

0 ≥ E[Vn] ≥ E[(b− a)Un(a, b)]− E[|Xn − a|].

We obtain the desired result.

Theorem 2.4. Let X be a martingale such that supn≥0 E[|Xn|2] <∞. Then

lim
n→∞

Xn = X∞, for some r.v. X∞ ∈ L2.

and

lim
n→∞

E[|Xn −X∞|2] = 0.

Proof. Recall from Cauchy-Schwarz inequality that supn≥1 E[|Xn|] ≤ supn≥1

√
E[|Xn|2] ≤ ∞.

Then limn→∞Xn exists by 2.3.
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We �rst denote that ∆Xn := Xn −Xn−1, n ≥ 1. We claim that

E[X2
n] = E[X2

0 ] +
n∑
k=1

E[∆X2
n].

Indeed, Xn = X0 + ∆X1 + · · ·+ ∆Xn, then

X2
n = X2

0 + ∆X2
1 + · · ·+ ∆X2

n +
∑
i 6=j

1≤i,j≤n

∆Xi∆Xj +
n∑
i=1

2X0∆Xi

and

E[X0∆Xi] = E[E[X0∆Xi|Fi−1]]

= E[X0E[∆|Fi−1]]

= 0.

Let i < j, we know that

E[∆Xi∆Xj ] = E[E[∆Xi∆Xj |Fj−1]]

= E[∆XiE[∆Xj |Fj−1]]

= 0.

Thus,

lim
n→∞

E[X2
n] = E[X2

0 ] +
∞∑
k=1

E[∆X2
k ] ≤ C ≤ +∞

where C := supn≥1 E[|Xn|2] <∞. Therefore, for m > n,

E[(Xm −Xn)2] = E[(
m∑

k=n+1

∆Xk)
2]

= E[
m∑

k=n+1

∆X2
k ] + E[

∑
i 6=j

n+1≤i,j≤m

∆Xi∆Xj ]

=

m∑
k=n+1

E[∆X2
k ]→ 0, as m,n→∞.

Then (Xn)n≥1 is a Cauchy sequence in L2 space. From the completeness of L2, we know by 1.9

that Xn converges to X∞ in L2 space, i.e. limn→∞ E[|Xn −X∞|2] = 0.

Theorem 2.5 (Law of large number). Let (ξk)k≥1 be a sequence of i.i.d. random variables, such

that E[|ξi|] <∞. Then

1

n

n∑
k=1

ξk −→ E
[
X1

]
, a.s.
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We will use the theorem of convergence of martingale to prove the above theorem.

Stochastic Gradient Algorithm (Robins-Monro algorithm)

Let (Xk)k≥1 be a sequence of i.i.d. random variables with the same law of X. Then we give

the stochastic gradient algorithm

θk+1 = θk − γk+1F (θk, Xk+1), ∀k ∈ N. (8)

where F : Rd × R→ Rd satis�es E[F (θ,X)] = f(θ).
To make the algorithm converges, we make the following assumptions:

Assumption 2.6. • γk > 0,
∑∞

k=1 γk = +∞,
∑∞

k=1 γ
2
k < +∞

• There exists a point θ∗ ∈ Rd such that

〈θk − θ∗, f(θk)〉 > 0, ∀ θk 6= θ∗.

• F is uniformly bounded by some constant C > 0.

Theorem 2.7. Given F : Rd × R → Rd, f : Rd → Rd, θ0 ∈ R and constants {γk}k≥1, we

de�ne a sequence of random variables {θk}k≥1 by (8) iteratively, then under Assumption 2.6,

limk→∞ θk = θ∗ a.s.

Remark 2.18. If g : Rd → R is strictly convex, θ∗ is the minimizer of g(θ), then for any θ 6= θ∗,
〈θ − θ∗,∇g(θ)〉 > 0.

Proof. Let us de�ne the F-predictable process (Sn)n≥0 by

Sn :=

n−1∑
k=0

γ2
k+1E

[
|F (θk, Xk+1)|2

∣∣Fk],
where F0 := {φ,Ω}, Fk := σ(X1, · · · , Xk) for any k ≥ 1 and F := (Fk)k≥0. Then by the

uniformly boundedness of F , we have

Sn ≤
n−1∑
k=0

γ2
k+1C

2 ≤ C2
∞∑
k=0

γ2
k+1.

Hence by the martingale convergence theorem, we know the existence of S∞ := limn→∞ Sn and

S∞ =
∞∑
k=0

γ2
k+1E

[
|F (θk, Xk+1)|2

∣∣Fk] ≤ C2
∞∑
k=0

γ2
k+1 a.s.

Next, we de�ne the adapted process (Zn)n≥0 by Zn := |θn − θ∗|2 − Sn for any n ∈ N and we

claim that (Zn)n≥0 is a F-supermartingale. First, observe that

E[|Zn|] ≤ E[|Sn|+ 2|θ∗|2 + 2|θn|2]

≤ C2
∞∑
k=0

γ2
k+1 + 2|θ∗|2 + 2E

[∣∣∣∣θ0 +

n−1∑
k=0

γk+1F (θk, Xk+1)

∣∣∣∣2]

≤ C2
∞∑
k=0

γ2
k+1 + 2|θ∗|2 + 4|θ0|2 + 4nE[|Sn|]

≤ (4n+ 1)C2
∞∑
k=0

γ2
k+1 + 2|θ∗|2 + 4|θ0|2 <∞.
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Next, for any n ∈ N,

E[Zn+1|Fn] = E[|θn+1 − θ∗|2 − Sn+1|Fn]]

= − Sn+1 + |θn − θ∗|2 + E[|γn+1F (θn, Xn+1)|2|Fn]

− 2E[〈θn − θ∗, γn+1F (θn, Xn+1)〉|Fn]

= − Sn+1 + |θn − θ∗|2 + E[|γn+1F (θn, Xn+1)|2|Fn]− 2γn+1〈θn − θ∗, f(θn)〉
≤ − Sn+1 + |θn − θ∗|2 + E[|γn+1F (θn, Xn+1)|2|Fn]

= Zn a.s.

Now let K := C2
∑∞

k=0 γ
2
k+1, we have (Zn +K)n≥0 is a positive supermaringale and

sup
n≥0

E[|Zn +K|] = sup
n≥0

E[Zn +K] ≤ E[Z0 +K] < ∞.

By the martingale convergence theorem, if follows that

lim
n→∞

Zn +K = Z∞ +K, for some r.v. Z∞ ∈ L1.

Then let L := S∞ + Z∞, we know that

lim
n→∞

|θn − θ∗|2 = L a.s.

and we claim that L = 0 a.s.

Let Aδ := {ω : L(ω) > δ}, then it is su�cient to prove that P[Aδ] = 0 for any δ > 0.
We assume by contradiction that P[Aδ] > 0, then η := infδ≤|θk−θ∗|2≤2L〈θk − θ∗, f(θk)〉 > 0

on Aδ, and we have

∞∑
k=0

γk+1〈θk − θ∗, f(θk)〉 ≥
∞∑
k=0

γk+1η = +∞, on Aδ.

Then the monotone convergence theorem gives that

∞∑
k=0

E[γk+1〈θk − θ∗, f(θk)〉] = +∞.

However, by the de�nition of the algorithm, we have

∞∑
k=0

E[γk+1〈θk − θ∗, f(θk)〉]

=

∞∑
k=0

E[〈θk − θ∗, γk+1F (θk, Xk+1)〉]

=
1

2

∞∑
k=0

E
[
|θk+1 − θ∗|2 − |θk − θ∗|2 − |γk+1F (θk, Xk+1)|2

]
=

1

2

(
lim
n→∞

E
[
|θk − θ∗|2

]
− E

[
|θ0 − θ∗|2

]
−
∞∑
k=0

γ2
k+1E

[
|F (θk, Xk+1)|2

])
=

1

2
E[S∞ + Z∞ − |θ0 − θ∗|2 − S∞]

=
1

2
E[Z∞ − |θ0 − θ∗|2] <∞.

Now we have a contradiction and complete the proof.
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3 Markov Chain

blabla
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